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Abstract - To date, there is no standard vehicle rollover crashworthiness test procedure accepted by any regulatory authority 
that is capable of providing repeatable results in a similar manner to frontal and side impact crash tests. It appears that rigs 
based on the principles of the Jordan Rollover System (JRS) may be capable of replicating in a repeatable manner both the 
vehicle kinematics and the roof deformation for typical rollover scenarios. However, the capability of such rigs to provide 
consistent results in repeated tests conducted within different facilities, i.e., reproducibility, has not yet been proven. This 
research paper investigates the reproducibility of testing conducted with a second evolved version of the JRS, namely the 
UNSW JRS, which was developed for the University of New South Wales in co-operation with US researchers. Also, the 
paper describes the test setup requirements along with some difficulties that were experienced during the  test  rig’s 
calibration. Reproducibility of testing with the UNSW JRS was assessed by replicating a baseline test previously performed 
at the University of Virginia using the Dynamic Rollover Test System (DRoTS), which is a rig with the same functionality 
as the UNSW JRS. The test with the UNSW JRS rig was performed under the same initial conditions and with the same 
type/model of vehicle used in the baseline test. Promising results were obtained from the comparison of the two tests 
independently carried out with the UNSW JRS rig and the UVA DRoTS rigs. The rigs have demonstrated to be potentially 
capable of performing reproducible rollover crash tests. This finding is a step toward a potential adoption of such rigs into a 
reliable dynamic rollover testing protocol for assessing vehicle crashworthiness. 
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INTRODUCTION 

 
To date, there is no standard rollover crashworthiness test procedure accepted by any regulatory 
authority that is capable of providing repeatable test results in a similar manner to frontal and side 
impact crash tests. The adoption of a reliable and repeatable rollover crash test protocol would permit 
researchers, regulators, and manufacturers to explore and understand how serious occupant injuries 
typically occur during real-world vehicle rollover crashes. Further, if such a rollover testing protocol 
is shown to be effective for vehicle design purposes, it could also be implemented into consumer- 
rating programs to assess the performance of devices that may prevent or mitigate injuries during a 
rollover, such as on-board retention and airbag systems. A review of various rollover crashworthiness 
tests and dynamic test rigs conducted by Chirwa et al. indicated rigs based on the principle of the 
Jordan Rollover System (JRS) as the best candidate to date [1]. The original JRS test rig was designed 
by the Center for Injury Research (CfIR) [2] as a tool used by forensic engineers to evaluate the 
potential for occupant injury due to ejection and roof crush as well as the effectiveness of side curtain 
airbags and seatbelts during rollovers [3]. 

 
Apart from being capable of replicating the dynamic loads, kinematics, and deformation that a vehicle 
is subject to during a real-world rollover event, a paramount characteristic for a successful dynamic 
rollover test rig is the capability of providing consistent results in repeated tests conducted within 
either the same laboratory or in different facilities. So far, there appear to be two potential candidate 
test rigs that may be capable of repeatable rollover testing, namely the University of New South 
Wales’s (UNSW) JRS rig located at the Crashlab facility in Sydney, Australia [4], and the Dynamic 
Rollover Test System (DRoTS) located at the University of Virginia (UVA) [5]. Both rigs are based 
on the same functional principles of the original version of the JRS test rig. During the rollover test, 
the rig initially supports the vehicle in an elevated position through hinged connections at both the 
vehicle front and rear ends. The vehicle is then given an initial rotational velocity along its 
longitudinal axis and then dropped onto a moving roadbed passing underneath it. After the vehicle 
drops off the upstream edge of the moving roadbed, it is captured and held by the rig supports to 
prevent any additional roof damage that may be caused by a second impact against the laboratory 
floor. 
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The rollover crash test principles on which the JRS is based have already proven to be capable of 
providing repeatable results for tests performed with the same rig and in the same facility [3,6,7,8]. 
However, the capability of rigs based on the JRS functionality to provide consistent results in repeated 
tests conducted within different facilities, i.e. reproducibility, has not yet been proven. This research 
paper investigates the reproducibility of testing conducted with the UNSW JRS, which is a rig 
developed in a joint effort between researchers at UNSW and various institutions in the USA [4,9]. 
This rig will be referred to as the UNSW JRS in the remainder of the paper. Also, the paper describes 
a difficulty that was initially experienced during the preliminary capability assessments and 
acceptance procedures of the test rig as well as the solution adopted to overcome this initial issue. 

 
To assess testing reproducibility, a rollover baseline crash test previously carried out by UVA 
researchers on a Toyota Yaris using the DRoTS rig [7,8] was replicated using the UNSW JRS rig 
under the same test initial conditions and with the same type of vehicle [10]. Since the designs and 
functionality of both UNSW JRS and UVA DRoTS rigs are essentially based on the same principles, 
tests performed using one rig should nominally be reproduced with the other rig within acceptable 
experimental test tolerances. Hence, testing reproducibility could be assessed by comparing the results 
between these two tests. 
 

 
UNSW JRS AND UVA DROTS RIGS 

 
Both the UNSW JRS and UVA DRoTS rigs are based on the same functional principles previously 
described in the Introduction. With respect to the original JRS design, in both rigs the vehicle roll 
motion and the roadbed translation are independently driven. An overview of each rig is provided in 
the schematics of Figure 1. The vehicle yaw angle, which is kept constant throughout the entire test, is 
obtained by rotating the gantry with respect to the roadbed direction of motion. To guarantee free 
vehicle pitch motion during the test, in both rigs the vehicle’s front and rear ends are attached to 
independent control arms. The main difference between the two rigs, which were designed and built 
independently, is that in the DRoTS one side-control arm is subject to compression while the other is 
under tension, whereas both side arms are under tension in the UNSW JRS. Both test rigs use the 
same type of sensors and data are analysed with similar post-processing methods. For both rigs, the 
test protocol requires all the sensor data to be digitally filtered using the procedure suggested in the 
Society of Automotive Engineers (SAE) J211 standard [11]. For data measured by the gyroscope 
mounted on the test vehicle a Channel Filter Class (CFC) 180 was used, whereas measurements from 
all the other sensors were filtered using a CFC 60. 

 
 

Cross Beam 

Gantry 

Test Vehicle 
 
 
 
 
 

Side Arms 
 

Roadbed 

 

 
 

UNSW JRS UVA DRoTS [5]
 

Figure 1. Schematics of UNSW JRS and UVA DRoTS Rigs. 
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Test Vehicle(*) (kg) 
Roadbed (kg) 

1,200.0 
1,865 

1,173.9 
1,789 

REPLICATION OF UVA TEST USING THE UNSW JRS 
 
The rollover crash test performed at Sydney’s Crashlab [12] with the UNSW JRS (Test B13037) used 
the same vehicle make, model, and year of the baseline test previously performed at UVA with the 
DRoTS rig (Test 1519), i.e., a 2010 four-door Toyota Yaris [7,8]. The target initial impact conditions 
for the UNSW JRS test matched the actual initial impact conditions measured at the beginning of 
UVA’s baseline Test 1519. 

 
In both tests with the UNSW JRS and the UVA DRoTS, the driver position was on the far side of the 
vehicle during the rollover. The only difference between the two tests was in the vehicle driver 
configuration: right-seated driver for the vehicle tested using the UNSW JRS and left-seated driver for 
the vehicle tested using the UVA DRoTS. The actual initial impact conditions for UNSW’s Test 
B13037 and UVA’s Test 1519 were very similar, as summarised in Table 1. Note that, in order to 
account for the opposite driver position, the vehicle tested in UNSW’s Test B13037 was given a roll 
motion in the opposite direction with respect to UVA’s Test 1519. For the same reason, also the 
roadbed direction of motion was opposite in the two tests. 

 
Table 1. Actual Initial Impact Test Conditions - UNSW Test B13037 and UVA Test 1519 

 
 

 

UNSW Test B13037 UVA Test 1519 
 

Roll (deg) -179.3 181.0 
Pitch (deg) -11.5 -12.9 
Yaw (deg)  90.0  90.0   

 

Roll Rate (deg/sec) -263.7 268.0 
Pitch Rate (deg/sec) -4.9 -5.2 
Vertical Velocity (m/s) 
[Equivalent Drop Height (mm)] 

2.12 
[228.8] 

2.11 
[227.7] 

Roadbed Velocity (km/h)  29.6  30.2   
 
 
 

(*) Vehicle mass includes: (a) instrumentation, (b) cradle, and (c) cantilevered load of JRS arms 
 
Vehicle-cradle attachment and initial failure 

 
The test vehicle was attached to the UNSW JRS through a rigid cradle structure, which was welded to 
the front and rear ends of the test vehicle, as shown in Figure 2. The front and rear ends of the cradle 
were connected to the pulley located at the free extremity of the corresponding control arm of the 
UNSW JRS rig. 

 
Vehicle Front Vehicle Rear 

 

  
Figure 2. Cradle Attachment to Vehicle in UNSW JRS Test B13037. 
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Synchronisation between the vehicle roll and drop motions and the translation of the approaching 
roadbed sled is established through calibration runs prior to the actual crash test. Through this 
calibration, it is possible to precisely set the values of the vehicle roll angle and roll rate at which the 
initial impact has to occur. Note that, in order to prevent an impact during the calibration runs, the 
dropping vehicle is caught at about 200 mm above the roadbed level. A partial failure of the vehicle- 
cradle connection occurred during the initial calibration test. 

 
Initially, the front extremity of the cradle was welded to the two vehicle sacrificial beam elements that 
normally support the front bumper, which are designed to collapse in a controlled manner during a 
frontal impact for optimising the energy absorption. As a consequence of this intrinsic weakness, the 
vehicle sacrificial beams collapsed during the initial calibration run conducted before the actual 
rollover test. These beam elements bent under the load impulsively applied to the cradle when the 
free-falling vehicle was caught to prevent the vehicle from impacting the roadbed. The failure of the 
initial design of the cradle-to-vehicle connection during the calibration run is shown in Figure 3. 
Although during the actual crash test the vehicle is caught by the two JRS suspensions only at the end 
of the impact, such a weak cradle-to-vehicle connection could have still partially failed during the test. 
Such a failure could have potentially affected the free roll motion of the vehicle. Thus, in order to 
prevent this type of failure during the actual rollover test, it was decided to extend the steel tubes of 
the cradle connection so that they could be welded directly to the stronger vehicle front rails. With 
this modified vehicle-cradle connection, the UNSW JRS was capable of performing the test under the 
replicated UVA initial conditions. 

 

 
Figure 3. Failure of Initial Cradle-to-Vehicle Front Connection in UNSW JRS Test B13037. 
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The following sections provide a comparison between the results of the two rollover crash tests 
performed using the UNSW JRS and the UVA DRoTS rigs, respectively. To assess the 
reproducibility of these two rollover dynamic tests, their results were compared in terms of: (a) 
roadbed impact load, (b) vehicle kinematics, and (c) vehicle permanent deformation. 

 
Roadbed load 

 
Figure 4 compares the plots of the total vertical force as measured by the roadbed load cells during the 
rollover tests performed using the UNSW JRS and the UVA DRoTS rigs, respectively. A higher peak 
roadbed force equal to 122.4 kN was measured in UNSW’s Test B13037 compared to a peak load of 
94.4 kN in UVA’s Test 1519. However, the comparison of the load impulses shown in Figure 5 
clearly indicates that, overall, a slightly higher roadbed average vertical load occurred in the test with 
UVA DRoTS rig throughout the entire duration of the two crash tests. 
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Figure 4. Roadbed Vertical Force – UNSW Test B13037 vs. UVA Test 1519. 
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Figure 5. Impulse of the Roadbed Vertical Force – UNSW Test B13037 vs. UVA Test 1519. 
 
Vehicle kinematics and dynamic deformation 

 
A  visual  comparison of  the  vehicle  kinematics  and  dynamic  deformation  during  UNSW’s  Test 
B13037 and UVA’s Test 1519 is shown in the sequential frames of Figure 6. Overall, a similar 
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vehicle dynamic deformation occurred during the tests with the UNSW JRS and UVA DRoTS rigs. 
However, some differences between the two tests can be noticed in terms of the vehicle kinematics. 

 
Vehicle kinematics 

 
The main noticeable difference in the vehicle kinematics was that the vehicle bounced up at the end of 
UVA’s Test 1519whereas considerable relative sliding between the vehicle and the roadbed occurred 
in the last phase of Test B13037 with the UNSW JRS rig. Such relative sliding between the vehicle 
and the roadbed in UNSW’s Test B13037 was likely caused by a lower surface friction of the roadbed 
used with the UNSW JRS compared to the friction of the UVA DRoTS’s roadbed. 

 
Further, the vehicle roll rate consistently decreased in the test with the UNSW JRS rig, whereas the 
vehicle roll motion accelerated during the first phase of the test with the UVA DRoTS rig, as clearly 
shown in the comparison in Figure 7. For both tests, the vehicle roll rate was measured using a 
gyroscopic sensor mounted close to the vehicle’s centre of gravity. Consequently, the vehicle roll 
angle in UNSW’s Test B13037 resulted to be consistently smaller than in UVA’s Test 1519, as 
shown in Figure 8. Also in this instance, a higher friction of the roadbed surface may explain the 
vehicle roll acceleration (i.e., increase of the roll rate) that occurred during the test with UVA DRoTS 
rig. Since at the beginning of the impact the roadbed was purposely assigned a travelling speed higher 
than the vehicle peripheral speed, it continuously transferred part of its momentum to the vehicle 
throughout the first part of the test with the UVA DRoTS rig. During the first half of the test with the 
UVA DRoTS rig, the energy transferred to the vehicle was greater than the energy dissipated through 
the crushing of the vehicle roof, thus resulting in a rotational acceleration of the test vehicle. On the 
other hand, during the test with the UNSW JRS rig, limited or no energy at all was transferred from 
the roadbed to the vehicle roll motion due to the previously mentioned relative sliding. In the UNSW 
JRS test, the energy dissipated from the roof crushing was not balanced by an energy input from the 
faster roadbed and the vehicle rotational rate decreased from the initial impact. 
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UNSW JRS (Test B13037) UVA DROT (Test 1519) (*)
 

  
t = 0 ms (Initial Impact) 

  
t = 84 ms 

  
t = 164 ms 

  
t = 254 ms 

  
t = 334 ms 

(*) Pictures mirrored on vertical plane to compensate for opposite direction of vehicle roll motion 
(Driver position in vehicle tested w/ UVA DRoTS was on the left side) 

Figure 6. Vehicle Kinematics and Dynamic Deformation (Front View) – UNSW Test B13037 vs. 
UVA Test 1519. 
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Figure 7. Vehicle Roll Rate – UNSW Test B13037 and UVA Test 1519. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Vehicle Roll Displacement – UNSW Test B13037 and UVA Test 1519. 
 
Dynamic crush of A- and B- pillars 

 
In both tests with the UNSW JRS and the UVA DRoTS rigs, the dynamic deformations of the upper 
A- and B- pillars on the vehicle far-side were measured using two sets of three string potentiometers. 
All the string potentiometers were positioned on the vehicle floor, in locations corresponding to the 
floor attachment of either the front driver’s or the front passenger’s seat, as indicated in Figure 9. The 
locations where the end of the potentiometer strings were attached to either the vehicle A- or B- pillar 
are indicated in Figure 10. Such a configuration with a set of three string potentiometers attached to 
the same pillar location was initially adopted by UVA to allow for a calculation of the pillar 
displacement in the vehicle relative coordinate system via trilateration. For the sake of convenience, 
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in this paper only the displacements measured by each of the three potentiometers for each pillar were 
compared. 

 
String potentiometers for right A-pillar 

String potentiometers for right B-pillar 
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B1 B2 
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UNSW Test B13037 UVA Test 1519* [8]
 

(*) Image mirrored on vertical plane to compensate for opposite driver position 
Figure 9. String Potentiometers Positioned on Vehicle Floor. 

 
 

 
Figure 10. Attachment of String Potentiometers to Vehicle Pillars. 

 
The comparison of the displacements measured by the string potentiometers in the tests with the 
UNSW JRS and UVA DRoTS is shown in Figure 11. An analysis of these displacements indicated a 
similar trend between the two tests in terms of both the duration and the shape of the curves. 
However, it is clear that in the test with the UVA DRoTS a slightly larger deformation of the A-pillar 

A-Pillar B-Pillar 

(*) Images mirrored on vertical plane to compensate for opposite driver position 
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as well as a slightly smaller deformation of the B-pillar occurred. Both differences in the crush of A- 
and B- pillars may have been caused by the slightly larger initial pitch angle at the beginning of 
UVA’s Test 1519. The larger crush of the driver A-pillar in the test with the UVA DRoTS rig is 
reflected in a prolonged and almost constant roadbed force compared to a shorter and decaying 
roadbed load measured in the test with the UNSW JRS rig, as shown in Figure 4. 
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Figure 11. Displacement of String Potentiometers Attached to Far-Side Vehicle A- and B- 
Pillars. 

 
The larger B-pillar crush in the test with the UNSW JRS rig may also have been caused by a weaker 
resistance of the front driver door due to a slip-off of the side window’s upper edge from the door 
frame, which did not break during the entire test. On the other hand, in the test with the UVA DRoTS 
rig, the upper edge of the driver side window stayed connected to the door frame until it shattered. 
Further, the ultimate strength of the side window in UVA Test 1519 may have been slightly increased 
by the plastic film that was covering it in order to prevent pieces of broken glass to spread through the 
laboratory during their test. 

Di
sp

la
ce

m
en

t (
m

m
) 

Di
sp

la
ce

m
en

t (
m

m
) 



ICR-14-32                                                        Proceeding of International Crashworthiness Conference 2014 
 

11 | I C R A S H 2 0 1 4  
 

Vehicle permanent deformation 
 
Photographs of the vehicle overall permanent deformation as well as a digital scan of the deformed 
roof for the vehicle used in the tests with the UNSW JRS and the UVA DRoTS are shown in Figure 
12. Both digital scans were taken from the interior of the vehicles after the corresponding test. A 
visual comparison of these scans indicates that the roof collapsed in a similar fashion in both tests: a 
plastic hinge formed on the roof front header at about three quarters of the roof width from the 
impacted far side, i.e., the driver’s side. In both UNSW’s Test B13037 and UVA’s Test 1519, the 
asymmetric location of this plastic hinge was caused by a larger crush of the far-side A-pillar 
compared to the corresponding pillar on the far-side. The extent of such a plastic hinge at the roof 
header resulted to be slightly smaller for the vehicle tested with the UNSW JRS rig. This smaller 
plastic hinge was a direct consequence of a smaller amount of crush of the far-side A-pillar that 
occurred in UNSW’s Test B13037. This was probably due to the vehicle-roadbed relative sliding 
during the last phase of the rollover test, which was discussed in the previous section. 

 
 

 
  

 
UNSW Test B13037 UVA Test 1519* [7,8]

 
(*) Images mirrored on vertical plane to compensate for opposite driver position 

Figure 12. Permanent Deformation: Tested Vehicle (Top) and Roof Digital Scan from Vehicle 
Interior (Bottom). 

 
REPRODUCIBILITY ASSESSMENT 

 
The results obtained with the UNSW JRS rig are similar to those from an analogous test previously 
performed by UVA using the DRoTS rig. In both UNSW’s Test B13037 and the analogous UVA’s 
Test 1519, the vehicle roof deformation was similar in terms of both shape and magnitude. Similarly, 
there was a good match between the impact loads measured by the sensors embedded in the moving 
roadbeds during both rollover tests. However, a couple of dissimilarities were found regarding the 
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vehicle kinematics observed in the two tests conducted using the UNSW JRS rig and the UVA 
DRoTS, respectively. 

 
An analysis of the vehicle roll rate measured during each test indicated an opposite trend in the first 
phase of the rollover crash: a vehicle roll deceleration upon impact with the roadbed in UNSW’s Test 
B13037 versus an initial vehicle roll acceleration in the analogous test with the UVA DRoTS rig. A 
higher roadbed coefficient of friction in the baseline test conducted using the UVA DRoTS rig has 
been identified as the likely cause for the initial rotational acceleration of the test vehicle as well as its 
subsequent bouncing over the moving roadbed. The roadbed friction is an easily controllable 
parameter in a test environment. As such it is believed that the mentioned dissimilarities in terms of 
vehicle kinematics would likely not arise in future tests conducted using the UNSW JRS and the UVA 
DRoTS as far as roadbeds with comparable friction characteristic are used. Under this assumption of a 
standard roadbed friction during testing and considering the many similarities observed in the results 
between UNSW’s Test B13037 and UVA’s Test 1519, it appears to be reasonably possible to 
reproduce the same test in different laboratories with rigs based on the JRS principle. 

 
Further, another factor that may have contributed to a larger tangential force exchanged between the 
roadbed and the vehicle during UVA’s Test 1519 could be the configuration of the control arm 
connected to the vehicle front end. In the DRoTS rig the control arm that is connected to the vehicle 
front end was positioned such that it went into compression, thus potentially causing an additional 
vertical force pushing the vehicle down on the roadbed. Additionally, the front control arm of the 
DRoTS rig transferred the compressive load to the gantry to which it was attached. This transferred 
load caused an initial large elastic deformation of the gantry, which could have subsequently released 
a load back to the vehicle thus initiating its bouncing during the second phase of the test. An 
additional vertical load due to the compressive configuration of the front control arm in the DRoTS 
rig seems to be consistent with the longer and constant vertical force measured by the roadbed during 
UVA’s Test 1519 in comparison to the shorter and decaying roadbed load measured in the test with 
the UNSW JRS rig. However, a higher roadbed peak load occurred in the test with the UNSWJRS rig. 
Further analysis needs to be performed to confirm such speculations. 

 
Finally, the opposite driver’s configuration for the two tested vehicles (i.e., left hand-side for UVA’s 
Test 1519 and right -hand-side for UNSW’s Test B13037) may have resulted in some differences in 
the inertial properties of the two vehicles as well. 

 
 
CONCLUSIONS AND DISCUSSION 

 
The comparison of the UNSW JRS test results against the DRoTS baseline test results indicated that 
the two rigs are potentially capable of providing similar outcomes within a reasonable tolerance 
expected from experimental crash tests. The shape of the roof damage was basically identical between 
the two tests, with only a marginally smaller deformation occurring in the UNSW JRS test. However, 
some differences between the tests performed with the two rigs were noticed in terms of vehicle 
kinematics. In the first phase of each test with the respective similar rig an opposite trend was noticed 
for the vehicle roll motion, with a roll acceleration occurring at the beginning of the test with the 
UVA DRoTS. Also, in the test with the UVA DRoTS the vehicle eventually bounced over the 
roadbed. Friction between the vehicle and roadbed was identified as the likely ultimate reason for 
these differences in terms of vehicle kinematics. The different configuration of the control arms 
between the two test rigs may have affected the vehicle kinematics as well. 

 
Overall, promising results were obtained when replicating with the UNSW JRS rig a baseline test 
previously carried out in similar conditions with another completely independently-constructed test 
rig (i.e., the DRoTS). The comparison of the results between the two tests demonstrates that it is 
possible to carry out reproducible rollover crash tests with rigs based on the JRS functional concepts. 
Further, previous investigations carried out on repeated tests using the original version of the JRS rig 
as well as the UVA DRoTS indicated a good repeatability of the test results. Hence, test devices based 
on the JRS functional principles can definitively be considered as suitable candidates by designers, 
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regulators, and consumer groups for future repeatable and reproducible vehicle rollover crash testing. 
Such dynamic rollover testing protocol may provide researchers with a tool to investigate the causes 
for the serious occupant injuries that typically occur during vehicle rollovers. 

 
Further improvements in the reproducibly of vehicle dynamic rollover testing with rigs based on the 
JRS functional principles may be achieved by setting common inter-laboratory standard test 
procedures related to various test parameters, such as the roadbed friction, dimensions, weight, and 
propulsion method as well as the positioning and attachment of the cradle to the test vehicle. 
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